
Local instructor-led live Kubeflow training courses in Azərbaycan.
Kubeflow Course Outlines
Course Name
Duration
Overview
Course Name
Duration
Overview
35 hours
This instructor-led, live training in Azərbaycan (online or onsite) is aimed at developers and data scientists who wish to build, deploy, and manage machine learning workflows on Kubernetes.
By the end of this training, participants will be able to:
- Install and configure Kubeflow on premise and in the cloud using AWS EKS (Elastic Kubernetes Service).
- Build, deploy, and manage ML workflows based on Docker containers and Kubernetes.
- Run entire machine learning pipelines on diverse architectures and cloud environments.
- Using Kubeflow to spawn and manage Jupyter notebooks.
- Build ML training, hyperparameter tuning, and serving workloads across multiple platforms.
28 hours
This instructor-led, live training in Azərbaycan (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to an AWS EC2 server.
By the end of this training, participants will be able to:
- Install and configure Kubernetes, Kubeflow and other needed software on AWS.
- Use EKS (Elastic Kubernetes Service) to simplify the work of initializing a Kubernetes cluster on AWS.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other AWS managed services to extend an ML application.
28 hours
This instructor-led, live training in Azərbaycan (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to Azure cloud.
By the end of this training, participants will be able to:
- Install and configure Kubernetes, Kubeflow and other needed software on Azure.
- Use Azure Kubernetes Service (AKS) to simplify the work of initializing a Kubernetes cluster on Azure.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other AWS managed services to extend an ML application.
28 hours
This instructor-led, live training in Azərbaycan (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to Google Cloud Platform (GCP).
By the end of this training, participants will be able to:
- Install and configure Kubernetes, Kubeflow and other needed software on GCP and GKE.
- Use GKE (Kubernetes Kubernetes Engine) to simplify the work of initializing a Kubernetes cluster on GCP.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other GCP services to extend an ML application.
28 hours
This instructor-led, live training in Azərbaycan (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to IBM Cloud Kubernetes Service (IKS).
By the end of this training, participants will be able to:
- Install and configure Kubernetes, Kubeflow and other needed software on IBM Cloud Kubernetes Service (IKS).
- Use IKS to simplify the work of initializing a Kubernetes cluster on IBM Cloud.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other IBM Cloud services to extend an ML application.
28 hours
This instructor-led, live training in Azərbaycan (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to an OpenShift on-premise or hybrid cloud.
- By the end of this training, participants will be able to:
- Install and configure Kubernetes and Kubeflow on an OpenShift cluster.
- Use OpenShift to simplify the work of initializing a Kubernetes cluster.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Call public cloud services (e.g., AWS services) from within OpenShift to extend an ML application.
28 hours
This instructor-led, live training in Azərbaycan (online or onsite) is aimed at developers and data scientists who wish to build, deploy, and manage machine learning workflows on Kubernetes.
By the end of this training, participants will be able to:
- Install and configure Kubeflow on premise and in the cloud.
- Build, deploy, and manage ML workflows based on Docker containers and Kubernetes.
- Run entire machine learning pipelines on diverse architectures and cloud environments.
- Using Kubeflow to spawn and manage Jupyter notebooks.
- Build ML training, hyperparameter tuning, and serving workloads across multiple platforms.
Last Updated:
Other regions
Other countries
Consulting
Online Kubeflow courses, Weekend Kubeflow courses, Evening Kubeflow training, Kubeflow boot camp, Kubeflow instructor-led, Weekend Kubeflow training, Evening Kubeflow courses, Kubeflow coaching, Kubeflow instructor, Kubeflow trainer, Kubeflow training courses, Kubeflow classes, Kubeflow on-site, Kubeflow private courses, Kubeflow one on one training